# Cryptography in a Post-Quantum World

Dustin Moody

National Institute of Standards and Technology U.S. Department of Commerce Crypto Technology Group Computer Security Division Information Technology Lab

### NIST

- Non-regulatory federal agency within U.S.
  Department of Commerce.
- Founded in 1901, known as the National Bureau of Standards (NBS) prior to 1988.
  - Origins in the Constitution: "Congress shall have power to .... fix the standard of weights and measures..."
- Headquarters in Gaithersburg, Maryland, and laboratories in Boulder, Colorado.
- Employs around 6,000 employees and associates.
- At least 5 Nobel prizes



## The Computer Security Division

Conducts research, development and outreach necessary to provide standards and guidelines, mechanisms, tools, metrics and practices to protect nation's information and information systems.

#### **CSD** Publications

- Federal Information Processing Standards (FIPS): Specify approved crypto standards.
- NIST Special Publications (SPs): Guidelines, technical specifications, recommendations and reference materials, including multiple sub-series.
- NIST Internal or Interagency Reports (NISTIR): Reports of research findings, including background information for FIPS and SPs.
- NIST Information Technology Laboratory (ITL) Bulletins: Monthly overviews of NIST's security and privacy publications, programs and projects.



## NIST-Approved Crypto Standards

#### **Block Ciphers**

- AES with 128, 192 and 256 bit keys (FIPS 197)
- Triple DES\*(SP 800-67) and SKIPJACK\*(FIPS 185)

Modes of Operation (SP 800 38 series)

- For confidentiality/authentication: ECB, CBC, CFB, OFB, XTS-AES, CCM, GCM
- Format preserving encryption modes: FF1, FF3

#### Hash Functions

 SHA-1\*, SHA-2 family (FIPS 180), SHA-3 family (FIPS 202), TupleHash and ParallelHash (SP 800-185)

#### MAC

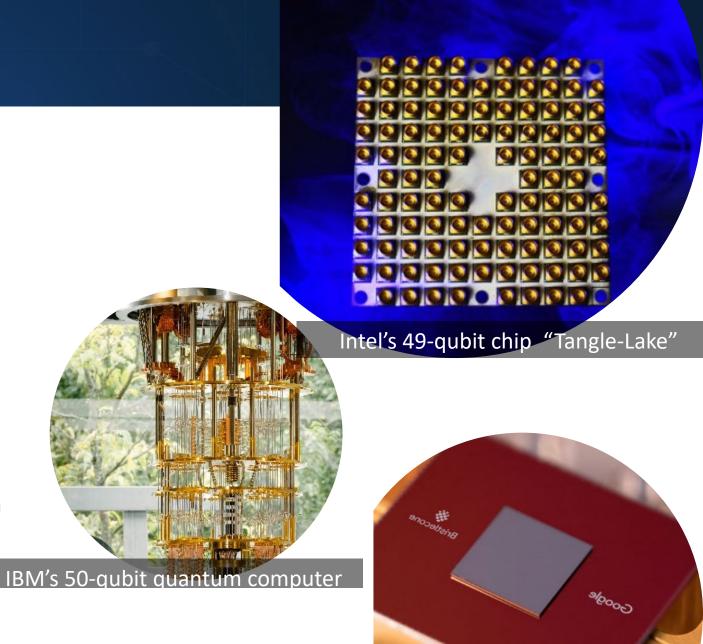
- CMAC, GMAC based on block ciphers
- HMAC, KMAC based on hash functions

#### Other standards

• Signatures, key agreement, key derivation, random bit generation etc.



#### Public-Key


- RSA (encryption and signatures)
- ECDSA
- EC Diffie-Hellman
- Finite field Diffie-Helman

FIPS 186 SP 800-56A and 56B

NIST museum https://www.nist.gov/nist-museum/about

### Quantum Computers

- Exploit quantum mechanics to process information
- "Qubits" instead of bits
- Potential to vastly increase computational power beyond classical computing limit
- Limitations:
  - When a measurement is made on quantum system, superposition collapses
  - Only good at certain problems
  - Quantum states are very fragile and must be extremely well isolated



Google's 72-qubit chip "Bristlecone"

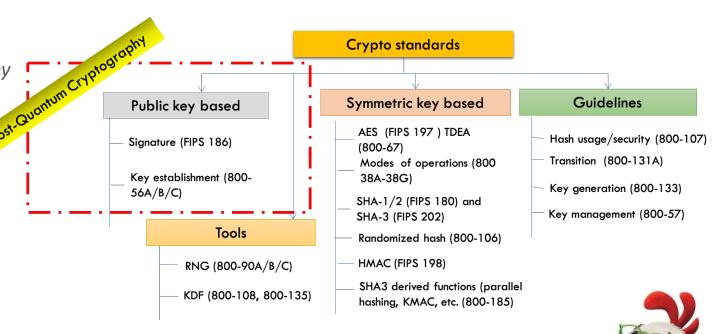
## Quantum Algorithms

- 1994, Peter Shor created a quantum algorithm that would give an exponential speed-up over classical computers
  - Factoring large integers
  - Finding discrete logarithms
- Grover's algorithm polynomial speed-up in unstructured search, from O(N) to  $O(\sqrt{N})$
- Simulating the dynamics of molecules, superconductors, photosynthesis, among many, many others
  - see https://quantumalgorithmzoo.org/





## The Quantum Threat

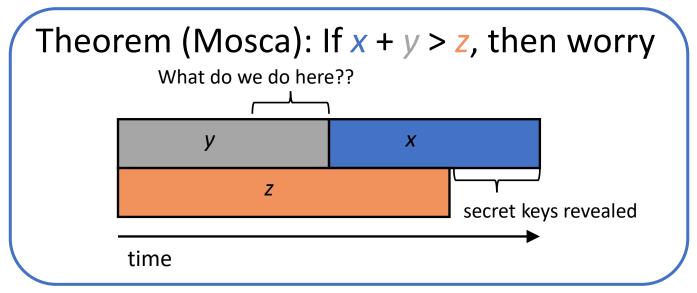



### • NIST public-key crypto standards

- **SP 800-56A:** Recommendation for Pair-Wise Key-Establishment Schemes Using Discrete Logarithm Cryptography
- **SP 800-56B**: Recommendation for Pair-Wise Key-Establishment Using Integer Factorization Cryptography
- FIPS 186: The Digital Signature Standard

vulnerable to attacks from a (large-scale) quantum computer

- Shor's algorithm would break RSA, ECDSA, (EC)DH, DSA
- Symmetric-key crypto standards would also be affected, but less dramatically



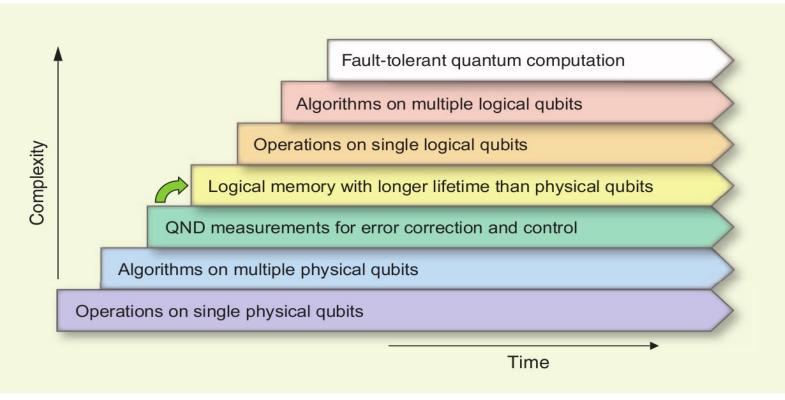

### Post-Quantum Cryptography



### • Post-Quantum Cryptography (PQC)

- Cryptosystems which run on classical computers, and are believed to be resistant to attacks from both classical and quantum computers
- How soon do we need to worry?




x – time of maintaining data security

y – time for PQC standardization and adoption

z – time for quantum computer to be developed

### **Quantum Computing Progress**

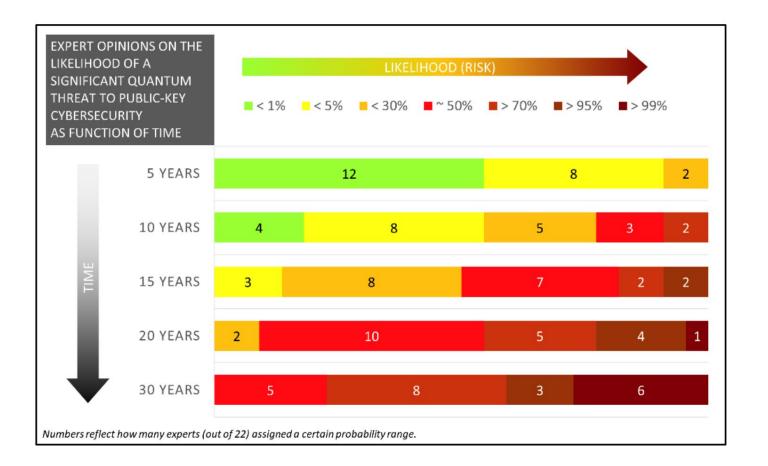
• A lot of progress, but still a long way to go



[Image credit: M. Devoret and R. Schoelkopf]

## When will a Quantum Computer be Built?






Quantum computers are 20 years in the future and always will be "There is a 1 in 5 chance that some fundamental public-key crypto will be broken by quantum by 2029."

- Dr. Michele Mosca, U. of Waterloo (2020)

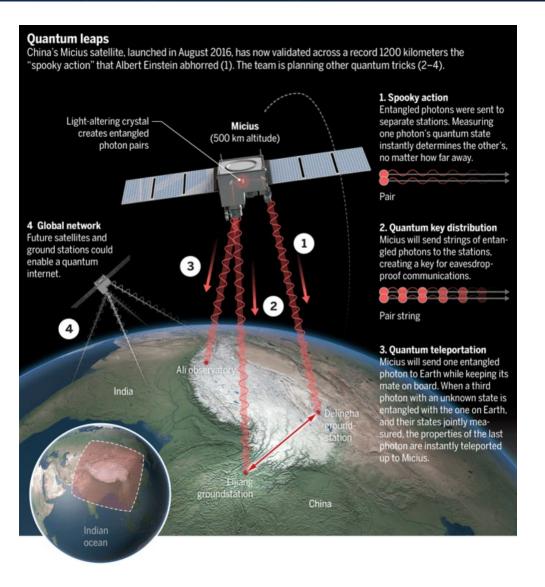
See also: <a href="https://globalriskinstitute.org/publications/quantum-threat-timeline/">https://globalriskinstitute.org/publications/quantum-threat-timeline/</a>

## When will a Quantum Computer be Built? NST



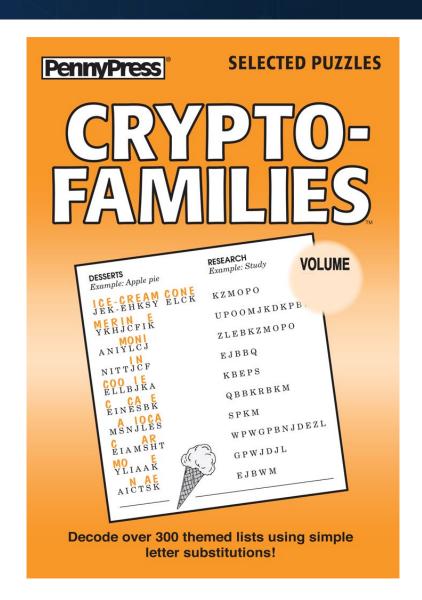
Source: M. Mosca, M. Piani, Quantum Threat Timeline Report, Oct 2019 available at: <u>https://globalriskinstitute.org/publications/quantum-threat-timeline/</u>

## Quantum Cryptography aka QKD

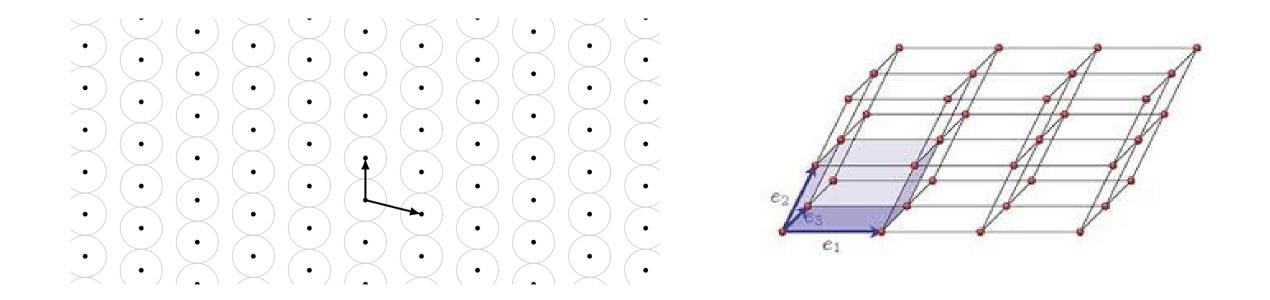

Using quantum technology to build cryptosystems

• Theoretically unconditional security guaranteed by the laws of physics

### Limitations

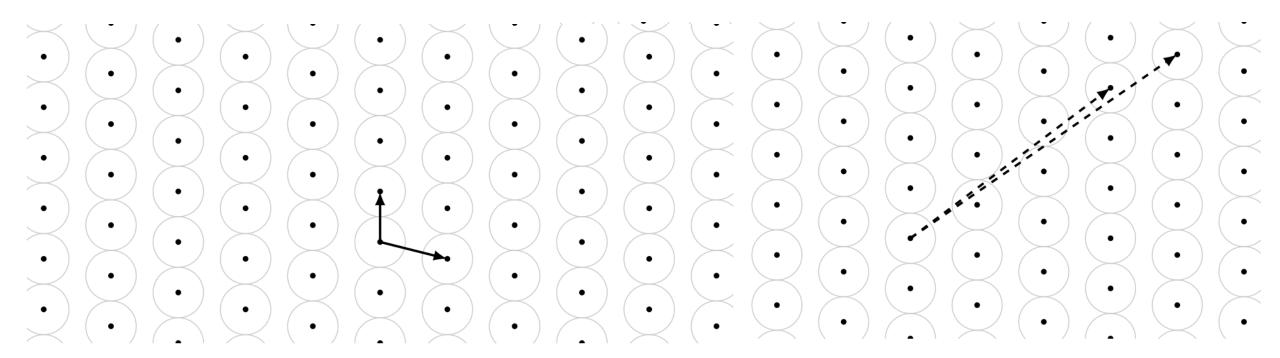

- Can do encryption, but not authentication
- Quantum networks not very scalable
- Expensive and needs special hardware

Lots of money being spent on "quantum" This is <u>NOT</u> our focus



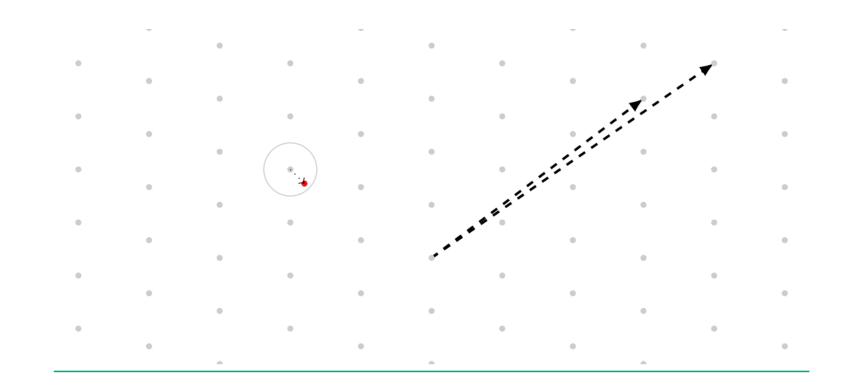

## The Main Families

- Lattice-based crypto
- Code-based crypto
- Multivariate crypto
- Isogeny-based crypto
- Hash-based crypto
- Other....



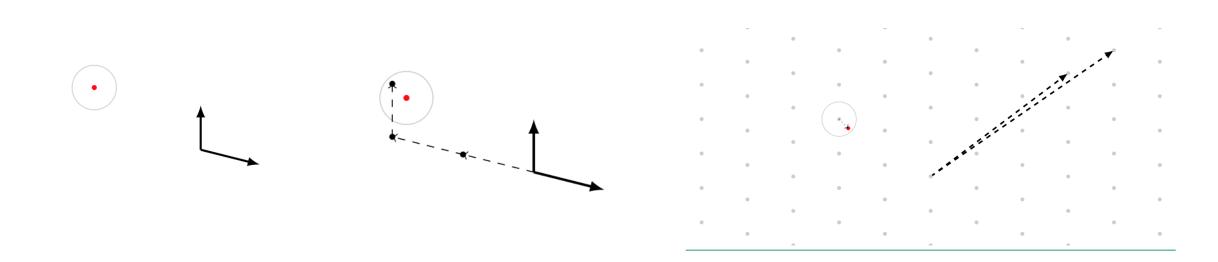

### Intro to Lattices




**Basis vectors** 

### **Basis vectors**




Any lattice point can be represented as a linear combination of the basis vectors

### **Closest Vector Problem**



Given a random point, can we find the closest lattice point? Closest Vector Problem: Given a point, and a basis, find the closest lattice point

### Good and Bad bases



- Closest Vector Problem: Given a point, and a basis, find the closest lattice point
- The problem is much easier with a "good" basis

### Linear Algebra

- We can represent the basis vectors of a lattice as a matrix
- Writing a lattice point as a linear combination of basis vectors is then linear algebra

#### Solving linear systems is easy

(use Gaussian elimination, polynomial time)

Given

• Find *s*<sub>1</sub>, *s*<sub>2</sub>, *s*<sub>3</sub>, *s*<sub>4</sub>

### **Closest Vector Problem**

• Given an arbitrary point – how do find the closest lattice point?

#### Solving linear systems with errors is hard

Given

$$\begin{array}{l} 1s_1 \,+\, 2s_2 \,+\, 5s_3 \,+\, 2s_4 \approx \, 9 \ mod \ 13 \\ 12s_1 \,+\, 1s_2 \,+\, 1s_3 \,+\, 6s_4 \approx 7 \ mod \ 13 \\ 6s_1 \,+\, 10s_2 \,+\, 3s_3 \,+\, 6s_4 \approx 1 \ mod \ 13 \\ 10s_1 \,+\, 4s_2 \,+\, 12s_3 \,+\, 8s_4 \approx 0 \ mod \ 13 \,. \end{array}$$

- Find  $s_1, s_2, s_3, s_4$ , knowing that the solution is incorrect by  $\pm 1 \dots$
- The problem is called Learning With Errors (LWE)
- The associated one-way function is

$$f(s,e) = As + e$$

Where  $s = (s_1, ..., s_4)$ , A is the coefficient matrix, e is a vector of small errors

## A (simplified) LWE Cryptosystem

- KeyGen()
  - Let A be a matrix for a lattice. Everything here is mod q (for some prime q)
  - Choose secret "short" vector s and "short" vector e. Compute b = As + e
  - The public key is A and b. The secret key is s
- Encrypt()
  - Choose "short" s' and e',e". Compute  $u = A^T s' + e'$  and  $v = b^T s' + e'' + m * [q/2]$
  - Ciphertext is (*u*, *v*)
- Decrypt()
  - Alice computes  $v s^T u = b^T s' + e'' + m * [q/2] s^T (As' + e')$  $= (As + e)^T s' + e'' + m * \left[\frac{q}{2}\right] - s^T A^T s' + s^T e'$   $= s^T A^T s' + e^T s' + e'' + m * \left[\frac{q}{2}\right] - s^T A^T s' + s^T e'$   $= m * \left[\frac{q}{2}\right] + e^T s' + e'' + s^T e'$
  - The error is "small" so *m* can be recovered

### Lattice-based cryptosytems

- A lot of research work on lattices
- A huge number of crypto functionalities can be implemented via lattices
- Formal security proofs to hard mathematical problems
  - Though not for parameters used in cryptosystems!
- Can add structure to lattices to reduce key sizes
  - Increased avenue for attacks
  - Structured lattices seem to be the most promising general-purpose post-quantum cryptosystems
- Efficient to implement in practice

### Intro to code-based crypto

- Error-correcting codes are used in telecommunications to correct errors
- Repetition code: encode a message *m* = 10110010 as

### 1111000011111111000000011110000

- This code can correct up to 1 error (per encoded message bit)
- How could we modify the encoding so it corrects more errors?

### **Generator Matrices**

- For the repetition code, a generator matrix is just  $G = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$
- Represent the message as a vector m = [10110010]

• Then 
$$Gm = \begin{bmatrix} 1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \end{bmatrix}$$

- There exist much more efficient codes: Goppa codes, Reed-Solomon codes, etc
- Codes have decoding algorithms, which take an arbitrary vector, and find the closest codeword.

## A (simplified) code-based encryption system

- KeyGen()
  - Alice chooses a code, i.e. a generator matrix G with an efficient decoding algorithm
  - She hides it by setting her public key to be  $\hat{G} = SGP$ , where S is invertible, and P is a permutation matrix
- Encrypt()
  - Bob encrypts a message m by computing  $m\hat{G}$
  - Bob selects an error vector e, and the ciphertext is  $c = m\hat{G} + e$
- Decrypt()
  - Alice computes  $cP^{-1} = m\hat{G}P^{-1} + eP^{-1}$ = mSG + e'
  - Alice can correct for e', obtaining mSG. She then decodes to obtain mS. As she knows  $S^{-1}$ , she can recover m
- An attacker has to try and find a decoding algorithm from the scrambled generator matrix, which appears to look like a random matrix

## Code-based Cryptosystems

- Old: The McEliece cryptosystem was proposed in 1979, and is still unbroken
- Code-based schemes tend to have large public keys, but small ciphertexts
- Can add more structure to the codes, and get smaller keys
  - Run a risk of additional structure leads to a new attack surface
- Almost all code-based signature schemes have been broken
- Implementations are efficient, since everything is linear algebra
- The ideas behind code-based schemes are very similar to the ideas in lattice-based crypto

### Multivariate Crypto

Solving a system of m multivariate polynomial equations in n variables over  $\mathbb{F}_q$ . This is called the

#### **MP Problem**

the MP problem is an NP-Complete problem even for multivariate quadratic system and q = 2

#### Example with m = 3, n = 3:

$$5x_1^3x_2x_3^2 + 17x_2^4x_3 + 23x_1^2x_2^4 + 13x_1 + 12x_2 + 5 = 0$$
  
$$12x_1^3x_2^3x_3 + 15x_1x_3^3 + 25x_2x_3^3 + 5x_1 + 6x_3 + 12 = 0$$
  
$$28x_1x_2x_3^4 + 14x_2^3x_3^2 + 16x_1x_3 + 32x_2 + 7x_3 + 10 = 0$$

It is very easy to evaluate multivariate functions

## A multivariate signature scheme

- Keygen()
  - Choose a "random" multivariate f such that  $f^{-1}$  is secretly known
  - The public key is f. The secret key is  $f^{-1}$
- Signing()
  - Given a message *m*, compute  $s = f^{-1}(m)$
  - The signature is s
- Verifying()
  - Given *s*, compute  $f(s) = f(f^{-1}(m)) = m$
  - Accept if you get *m* and reject otherwise
- How to choose such an *f*?
  - Many failed attempts
  - Over F<sub>q<sup>n</sup></sub>, the map induced by x → x<sup>q</sup> is a linear map. Can show g: x → x<sup>q<sup>α</sup>+1</sup> is invertible for certain α. You then scramble g by composing it with invertible maps on the left and right.

## Advantages and disadvantages

- Multivariate crypto is very efficient particularly verification
- Security rests on known hard problem the MQ problem
- Multivariate systems tend to have large public keys and small signatures
- As usual, can introduce some structure to get the keys smaller
- Pretty much all attempts at multivariate encryption have failed
- Many multivariate signature schemes have been broken, so many are nervous about the field
  - There are several unbroken schemes that have been around awhile, e.g. UOV, HFEv-

## **NIST PQC Milestones and Timelines**

#### 2016

Determined criteria and requirements, published NISTIR 8105

Announced call for proposals

#### 2017

Received 82 submissions Announced 69 1<sup>st</sup> round candidates

#### 2018

Held the 1<sup>st</sup> NIST PQC standardization Conference

#### 2019

Announced 26 2<sup>nd</sup> round candidates, <u>NISTIR 8240</u>

Held the 2<sup>nd</sup> NIST PQC Standardization Conference

#### 2020


Announced 3rd round 7 finalists and 8 alternate candidates. NISTIR 8309

#### 2021

Hold the 3<sup>rd</sup> NIST PQC Standardization Conference

### 2022-2023

Release draft standards and call for public comments



### **Evaluation Criteria**



### Security – against both classical and quantum attacks

| Level | Security Description                                        |
|-------|-------------------------------------------------------------|
| I     | At least as hard to break as AES128 (exhaustive key search) |
| Ш     | At least as hard to break as SHA256 (collision search)      |
| Ш     | At least as hard to break as AES192 (exhaustive key search) |
| IV    | At least as hard to break as SHA384 (collision search)      |
| V     | At least as hard to break as AES256 (exhaustive key search) |

NIST asked submitters to focus on levels 1,2, and 3. (Levels 4 and 5 are for very high security)

### **Performance** – measured on various classical platforms

**Other properties:** Drop-in replacements, Perfect forward secrecy, Resistance to sidechannel attacks, Simplicity and flexibility, Misuse resistance, etc.

## A Worldwide Effort





### 25 Countries

### 16 States

6 Continents

### The 1<sup>st</sup> Round

- A lot of schemes quickly attacked!
- Many similar schemes (esp. lattice KEMs)
- 1<sup>st</sup> NIST PQC Standardization workshop
- Over 300 "official comments" and 900 posts on the pqc-forum
- Research and performance numbers
- After a year: 26 schemes move on



|                                      | Signatures | <b>KEM/Encryption</b> | Overall |
|--------------------------------------|------------|-----------------------|---------|
| Lattice-based                        | 5          | 21                    | 26      |
| Code-based                           | 2          | 17                    | 19      |
| Multi-variate                        | 7          | 2                     | 9       |
| Stateless Hash or<br>Symmetric based | 3          |                       | 3       |
| Other                                | 2          | 5                     | 7       |
| Total                                | 19         | 45                    | 64      |



## The 2nd Round

- 4 merged submissions
- Maintained diversity of algorithms
- Cryptanalysis continues
- LAC, LEDAcrypt, RQC, Rollo, MQDSS, qTESLA, LUOV all broken
- 2<sup>nd</sup> NIST PQC Standardization workshop
- More benchmarking and real world experiments
- After 18 months: 15 submissions move on



|                                      | Signatures | KEM/Encryption | Overall |
|--------------------------------------|------------|----------------|---------|
| Lattice-based                        | 3          | 9              | 12      |
| Code-based                           |            | 7              | 7       |
| Multi-variate                        | 4          |                | 4       |
| Stateless Hash or<br>Symmetric based | 2          |                | 2       |
| Isogeny                              |            | 1              | 1       |
| Total                                | 10         | 16             | 26      |

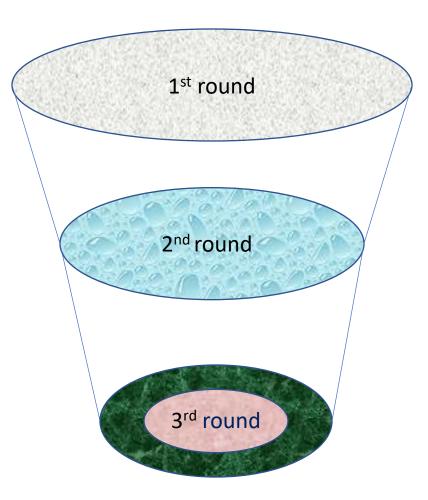


### Challenges and Considerations in Selecting Algorithms NIST

### Security

- Security levels offered
- (confidence in) security proof
- Any attacks
- Classical/quantum complexity

### Performance


- Size of parameters
- Speed of KeyGen, Enc/Dec, Sign/Verify
- Decryption failures

### Algorithm and implementation characteristics

- IP issues
- Side channel resistance
- Simplicity and clarity of documentation
- Flexible

### Other

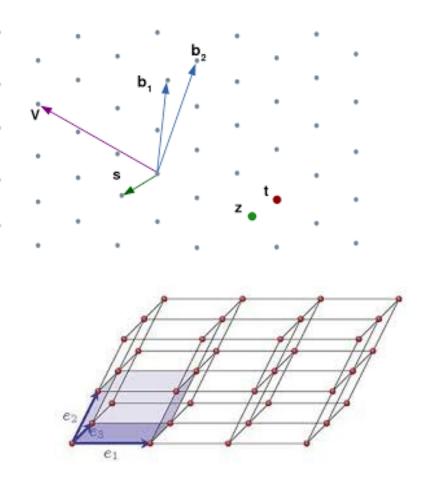
- Round 2 changes
- Official comments/pqc-forum discussion
- Papers published/presented



## The 3<sup>rd</sup> Round Finalists and Alternates



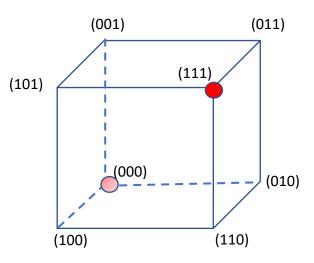
### • NIST selected 7 Finalists and 8 Alternates

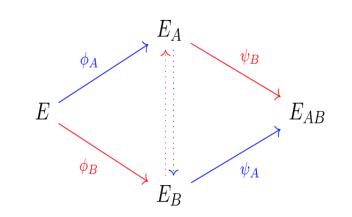

- Finalists: most promising algorithms we expect to be ready for standardization at end of 3<sup>rd</sup> round
- Alternates: candidates for potential standardization, most likely after another (4th) round
- KEM finalists: Kyber, NTRU, SABER, Classic McEliece
- Signature finalists: Dilithium, Falcon, Rainbow
- KEM alternates: Bike, FrodoKEM, HQC, NTRUprime, SIKE
- Signature alternates: GeMSS, Picnic, Sphincs+

|                                      | Signatures |   | KEM/Encryption |   | Overall |   |
|--------------------------------------|------------|---|----------------|---|---------|---|
| Lattice-based                        | 2          |   | 3              | 2 | 5       | 2 |
| Code-based                           |            |   | 1              | 2 | 1       | 2 |
| Multi-variate                        | 1          | 1 |                |   | 1       | 1 |
| Stateless Hash or<br>Symmetric based |            | 2 |                |   |         | 2 |
| Isogeny                              |            |   |                | 1 |         | 1 |
| Total                                | 3          | 3 | 4              | 5 | 7       | 8 |

## Lattice-based KEMs




- Crystals-Kyber
  - Great all-around  $\rightarrow$  Finalist
- Saber
  - Great all-around  $\rightarrow$  Finalist
- NTRU
  - Not quite as efficient, but older, IP situation  $\rightarrow$  Finalist
- NTRUprime
  - Different design choice and security model  $\rightarrow$  Alternate
- FrodoKEM
  - Conservative/Backup → Alternate

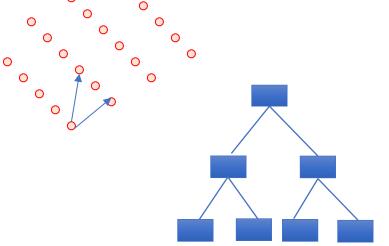



## Isogeny- and Code-based KEMs



- Classic McEliece
  - Oldest submission, large public keys but small ciphertexts → Finalist
- BIKE
  - Good performance, CCA security?, more time to be stable → Alternate
- HQC
  - Better security analysis/larger keys (than BIKE) → Alternate
- SIKE
  - Newer security problem, an order slower → Alternate






### • Dilithium and Falcon

- Both balanced, efficient lattice-based signatures
- coreSVP security higher?
- $\rightarrow$  Finalists

### • SPHINCS+ and Picnic

- SPHINCS+ is stable, conservative security, larger/slower  $\rightarrow$  Alternate
- Picnic not stable yet, but has lots of potential  $\rightarrow$  Alternate
- Rainbow and GeMSS
  - Both have large public keys, small signatures.
    Rainbow a bit better → Finalist, GeMSS → Alternate
  - There have been recent attacks on both Rainbow and GeMSS



$$p^{(1)}(x_1, \dots, x_n) = \sum_{i=1}^n \sum_{j=i}^n p_{ij}^{(1)} \cdot x_i x_j + \sum_{i=1}^n p_i^{(1)} \cdot x_i + p_0^{(1)}$$
$$p^{(2)}(x_1, \dots, x_n) = \sum_{i=1}^n \sum_{j=i}^n p_{ij}^{(2)} \cdot x_i x_j + \sum_{i=1}^n p_i^{(2)} \cdot x_i + p_0^{(2)}$$

 $\cap$ 

0

$$p^{(m)}(x_1,\ldots,x_n) = \sum_{i=1}^n \sum_{j=i}^n p_{ij}^{(m)} \cdot x_i x_j + \sum_{i=1}^n p_i^{(m)} \cdot x_i + p_0^{(m)}$$



## Timeline



- The 3<sup>rd</sup> round will last 12-18 months
  - NIST will then select which finalist algorithms to standardize
  - NIST will also select which alternates to keep studying in a 4<sup>th</sup> round (\*)
  - The 4<sup>th</sup> round will similarly be 12-18 months
  - NIST may decide to consider new schemes details to come
- NIST will hold a 3rd PQC Standardization workshop ~ spring 2021
- We expect to release draft standards for public comment in 2022-2023
- The finalized standard will hopefully be ready by 2024

## **Research Challenges**



- Many important topics to be studied:
  - Security proofs in both the ROM and QROM
  - Does the specific ring/module/field choice matter for security?
    - Or choice of noise distribution?
    - Does "product" or "quotient" style LWE matter?
  - Finer-grained metrics for security of lattice-based crypto (coreSVP vs. real-world security)
  - Are there any important attack avenues that have gone unnoticed?
  - Side-channel attacks/resistant implementations for finalists and alternates
  - More hardware implementations
  - Ease of implementations decryption failures, floating point arithmetic, noise sampling, etc.
- Specific algorithm questions
  - Decoding analysis for BIKE, category 1 security levels for Kyber/Saber/Dilithium, algebraic cryptanalysis of cyclotomics for lattices, etc...

## **Other Challenges**



- Many other challenges to work on
  - IP issues
  - Continued performance benchmarking in different platforms and environments
    - For hardware NIST suggested Artix-7 and Cortex M4 (with all options) for easier comparison
  - Real world experiments
    - How do these algorithms work in actual protocols and applications.
      - Are some key sizes too large?

# Stateful hash-based signatures were proposed in 1970s

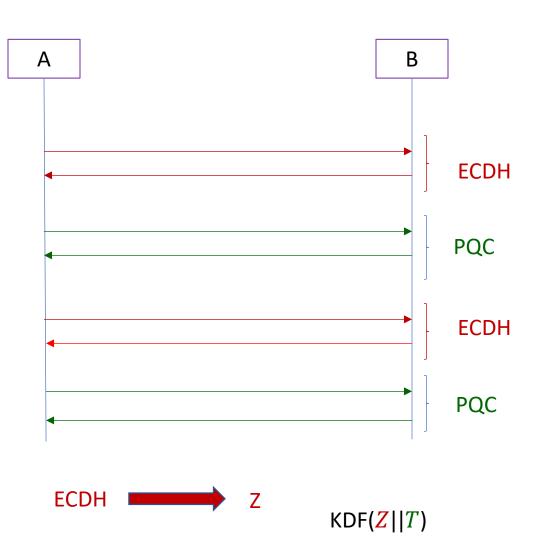
- Rely on assumptions on hash functions, that is, not on number theory complexity assumptions
- It is essentially limited-time signatures, which require state management

### NIST specification on stateful hashbased signatures

• NIST SP 800-208 "Recommendation for Stateful Hash-Based Signature Schemes"

# Internet Engineering Task Force (IETF) has released two RFCs on hash-based signatures

- <u>RFC 8391</u> "XMSS: eXtended Merkle Signature Scheme" (By Internet Research Task Force (IRTF))
- <u>RFC 8554</u> "Leighton-Micali Hash-Based Signatures" (By Internet Research Task Force (IRTF))


### ISO/IEC JTC 1 SC27 WG2 Project on hashbased signatures

- Stateful hash-based signatures will be specified in ISO/IEC 14888 Part 4
- It is in the 1st Working Draft stage

### Hybrid mode – An approach for migration

### NIST SP800-56C Rev. 2 *Recommendation for Key-Derivation Methods in Key-Establishment Schemes* August 2020

"In addition to the currently approved techniques for the generation of the shared secret Z ... this Recommendation permits the use of a "hybrid" shared secret of the form Z' = Z || T, a concatenation consisting of a "standard" shared secret Z that was generated during the execution of a key-establishment scheme (as currently specified in [SP 800-56A] or [SP 800-56B]) followed by an auxiliary shared secret T that has been generated using some other method"



## NIST Transition Guideline for PQC?

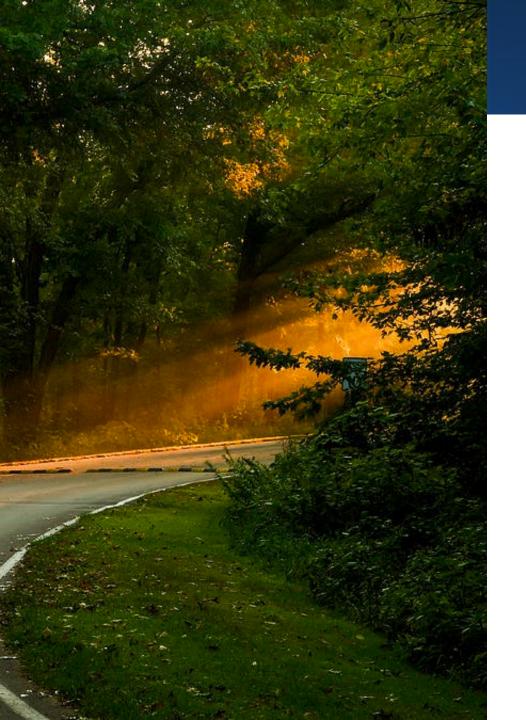


### NIST has published transition guidelines for algorithms and key lengths

- NIST SP 800-131A Revision 2 "Transitioning the Use of Cryptographic Algorithms and Key Lengths"
- Examples
  - Three-key Triple DES
    - Encryption Deprecated through 2023 Disallowed after 2023 Decryption - Legacy use
  - SHA-1

Digital signature generation - Disallowed, except where specifically allowed by NIST protocol-specific guidance Digital signature verification - Legacy use Non-digital signature applications – Acceptable

• Key establishment methods with strength < 112 bits (e.g. DH mod p, |p| < 2048) Disallowed


### NIST will provide transition guidelines to PQC standards

- The timeframe will be based on a risk assessment of quantum attacks
- NCCoE hosted a workshop on <u>Considerations in Migrating to Post-Quantum Cryptographic</u> <u>Algorithms</u> on October 7

## What can organizations do now?



- Perform a quantum risk assessment within your organization
  - Identify information assets and their current crypto protection
  - Identify what 'x', 'y', and 'z' might be for you determine your quantum risk
  - Prioritize activities required to maintain awareness, and to migrate technology to quantum-safe solutions
- Evaluate vendor products with quantum safe features
  - Know which products are not quantum safe
  - Ask vendors for quantum safe features in procurement templates
- Develop an internal knowledge base amongst IT staff
- Track developments in quantum computing and quantum safe solutions, and to establish a roadmap to quantum readiness for your organization
- Act now it will be less expensive, less disruptive, and less likely to have mistakes caused by rushing and scrambling



### 

## Conclusion

• We can start to see the end?

- NIST is grateful for everybody's efforts
- Check out <u>www.nist.gov/pqcrypto</u>
  - Sign up for the pqc-forum for announcements & discussion
  - send e-mail to <u>pqc-comments@nist.gov</u>